Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118.938
Filtrar
1.
Nat Commun ; 15(1): 3222, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622124

RESUMO

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.


Assuntos
Condensados Biomoleculares , Proteínas de Escherichia coli , Bactérias/genética , Escherichia coli/genética , Agregados Proteicos , Projetos de Pesquisa , Proteínas de Choque Térmico
2.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622146

RESUMO

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Assuntos
Proteínas de Escherichia coli , Histidina Quinase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Elife ; 122024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622998

RESUMO

Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.


Assuntos
Infecções por Escherichia coli , Meningite , Recém-Nascido , Humanos , Escherichia coli/genética , Virulência/genética , Células Clonais
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612623

RESUMO

Posttranslational modifications (PTMs), particularly phosphorylation, play a pivotal role in expanding the complexity of the proteome and regulating diverse cellular processes. In this study, we present an efficient Escherichia coli phosphorylation system designed to streamline the evaluation of potential substrates for Arabidopsis thaliana plant kinases, although the technology is amenable to any. The methodology involves the use of IPTG-inducible vectors for co-expressing kinases and substrates, eliminating the need for radioactive isotopes and prior protein purification. We validated the system's efficacy by assessing the phosphorylation of well-established substrates of the plant kinase SnRK1, including the rat ACETYL-COA CARBOXYLASE 1 (ACC1) and FYVE1/FREE1 proteins. The results demonstrated the specificity and reliability of the system in studying kinase-substrate interactions. Furthermore, we applied the system to investigate the phosphorylation cascade involving the A. thaliana MKK3-MPK2 kinase module. The activation of MPK2 by MKK3 was demonstrated to phosphorylate the Myelin Basic Protein (MBP), confirming the system's ability to unravel sequential enzymatic steps in phosphorylation cascades. Overall, this E. coli phosphorylation system offers a rapid, cost-effective, and reliable approach for screening potential kinase substrates, presenting a valuable tool to complement the current portfolio of molecular techniques for advancing our understanding of kinase functions and their roles in cellular signaling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Ratos , Fosforilação , Escherichia coli/genética , Reprodutibilidade dos Testes , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Proteínas de Transporte Vesicular
5.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612753

RESUMO

Refolding multi-disulfide bonded proteins expressed in E. coli into their native structure is challenging. Nevertheless, because of its cost-effectiveness, handiness, and versatility, the E. coli expression of viral envelope proteins, such as the RBD (Receptor-Binding Domain) of the influenza Hemagglutinin protein, could significantly advance research on viral infections. Here, we show that H1N1-PR8-RBD (27 kDa, containing four cysteines forming two disulfide bonds) expressed in E. coli and was purified with nickel affinity chromatography, and reversed-phase HPLC was successfully refolded into its native structure, as assessed with several biophysical and biochemical techniques. Analytical ultracentrifugation indicated that H1N1-PR8-RBD was monomeric with a hydrodynamic radius of 2.5 nm. Thermal denaturation, monitored with DSC and CD at a wavelength of 222 nm, was cooperative with a midpoint temperature around 55 °C, strongly indicating a natively folded protein. In addition, the 15N-HSQC NMR spectrum exhibited several 1H-15N resonances indicative of a beta-sheeted protein. Our results indicate that a significant amount (40 mg/L) of pure and native H1N1-PR8-RBD can be produced using an E. coli expression system with our refolding procedure, offering potential insights into the molecular characterization of influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Escherichia coli/genética , Dissulfetos
6.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612757

RESUMO

Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.


Assuntos
Escherichia coli , Fucose , Sítios de Ligação , Escherichia coli/genética , Óperon/genética , Fosforilação
7.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606299

RESUMO

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Células HeLa , Mucosa Intestinal/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Autofagia/fisiologia , Citocinas/metabolismo , Aderência Bacteriana
8.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606571

RESUMO

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Assuntos
Proteínas de Bactérias , Citrobacter , Humanos , Citrobacter/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
9.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607454

RESUMO

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Assuntos
Corynebacterium glutamicum , Ácido gama-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Indústria Farmacêutica , Engenharia , Escherichia coli/genética
10.
Nat Commun ; 15(1): 3188, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609402

RESUMO

Halogen-containing molecules are ubiquitous in modern society and present unique chemical possibilities. As a whole, de novo fermentation and synthetic pathway construction for these molecules remain relatively underexplored and could unlock molecules with exciting new applications in industries ranging from textiles to agrochemicals to pharmaceuticals. Here, we report a mix-and-match co-culture platform to de novo generate a large array of halogenated tryptophan derivatives in Escherichia coli from glucose. First, we engineer E. coli to produce between 300 and 700 mg/L of six different halogenated tryptophan precursors. Second, we harness the native promiscuity of multiple downstream enzymes to access unexplored regions of metabolism. Finally, through modular co-culture fermentations, we demonstrate a plug-and-play bioproduction platform, culminating in the generation of 26 distinct halogenated molecules produced de novo including precursors to prodrugs 4-chloro- and 4-bromo-kynurenine and new-to-nature halogenated beta carbolines.


Assuntos
Escherichia coli , Triptofano , Escherichia coli/genética , Fermentação , Cinurenina , Agroquímicos
11.
Microbiol Res ; 283: 127712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593580

RESUMO

Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.


Assuntos
Lipídeo A , Vibrio parahaemolyticus , Lipídeo A/química , Lipídeo A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Espectrometria de Massas
12.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621130

RESUMO

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Assuntos
Antibacterianos , Biofilmes , Bactérias , Rifampina/farmacologia , Escherichia coli/genética , Aderência Bacteriana
13.
J Agric Food Chem ; 72(15): 8693-8703, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574273

RESUMO

Ovalbumin (OVA) is the principal protein constituent of eggs. As an alternative to eggs, cell-cultured OVA can reduce the environmental impact of global warming and land use. Escherichia coli Nissle 1917 (EcN), a probiotic with specific endogenous cryptic plasmids that stably exist in cells without the addition of antibiotics, was chosen as the host for the efficient heterologous expression of the OVA. OVA yield reached 20 mg·L-1 in shake flasks using the OVA expression cassette containing a tac promoter (Ptac) upstream of the OVA-coding sequences on the endogenous plasmid pMUT2. Subsequently, we improved the level of the expression of the OVA by employing a dual promoter (PP5 combined with Ptac via a sigma factor binding site 24) and ribosome binding site (RBS) substitution. These enhancements increased the level of production of OVA in shake flasks to 30 and 42 mg·L-1, respectively. OVA by EcNP-P28 harboring plasmid L28 equipped with both dual promoter and the strong RBS8 reached 3.70 g·L-1 in a 3 L bioreactor. Recombinant OVA and natural OVA showed similar biochemical characteristics, including secondary structure, isoelectric point, amino acid composition, and thermal stability. This is currently the highest OVA production reported among prokaryotes. We successfully constructed an antibiotic-free heterologous protein expression system for EcN.


Assuntos
Escherichia coli , Probióticos , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/metabolismo , Ovalbumina/genética , Ovalbumina/metabolismo , Plasmídeos/genética
14.
PLoS One ; 19(4): e0296995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558084

RESUMO

Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.


Assuntos
Antimaláricos , Malária , Treonina-tRNA Ligase , Humanos , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Escherichia coli/genética , Relação Estrutura-Atividade , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Ácido Salicílico/farmacologia , RNA de Transferência
15.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560776

RESUMO

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Assuntos
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo
16.
Curr Protoc ; 4(4): e1017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578012

RESUMO

The Ser/Arg-rich splicing factors (SR proteins) constitute a crucial protein family in alternative splicing, comprising twelve members characterized by unique repetitive Arg-Ser dipeptide sequences (RS) and one to two RNA-recognition motifs (RRM). The RS regions of SR proteins undergo variable phosphorylation, resulting in unphosphorylated, partially phosphorylated, or hyper-phosphorylated states based on functional requirements. Despite the identification of the SR protein family over 30 years ago, the purification of native SR proteins in soluble form at large quantities has presented challenges due to their low solubility. This protocol delineates a method for acquiring soluble, full-length, unphosphorylated, hypo- and hyper-phosphorylated SRSF1, a prototypical SR family member. Notably, this protocol facilitates the purification of SRSF1 in ample quantities suitable for NMR, as well as various biophysical and biochemical studies. The methodologies and principles outlined herein are expected to extend beyond SRSF1 protein production and can be adapted for purifying other SR protein family members or SR-related proteins, such as snRNP70 and U2AF-35. Given the involvement of these proteins in numerous essential biological processes, this protocol will prove beneficial to researchers in related fields. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Purification of SRSF1 from E. coli Support Protocol: Purification of ULP1 Basic Protocol 2: Purification of hypo-phosphorylated SRSF1 from E. coli Basic Protocol 3: Purification of hyper-phosphorylated SRSF1 from E. coli.


Assuntos
Escherichia coli , Proteínas , Escherichia coli/genética , Fosforilação , Processamento Alternativo
17.
Mol Vis ; 30: 37-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586607

RESUMO

Purpose: Congenital cataract affects 1-15 per 10,000 newborns worldwide, and 20,000-40,000 children are born every year with developmental bilateral cataracts. Mutations in the crystallin genes are known to cause congenital cataracts. Crystallins, proteins present in the eye lens, are made up of four Greek key motifs separated into two domains. Greek key motifs play an important role in compact folding to provide the necessary refractive index and transparency. The present study was designed to understand the importance of the fourth Greek key motif in maintaining lens transparency by choosing a naturally reported Y134X mutant human γD- crystallin in a Danish infant and its relationship to lens opacification and cataract. Methods: Human γD-crystallin complementary DNA (cDNA) was cloned into the pET-21a vector, and the Y134X mutant clone was generated by site-directed mutagenesis. Wild-type and mutant proteins were overexpressed in the BL21 DE3 pLysS cells of E. coli. Wild-type protein was purified from the soluble fraction using the ion exchange and gel filtration chromatography methods. Mutant protein was predominantly found in insoluble fraction and purified from inclusion bodies. The structure, stability, aggregational, and amyloid fibril formation properties of the mutant were compared to those of the wild type using the fluorescence and circular dichroism spectroscopy methods. Results: Loss of the fourth Greek key motif in human γD-crystallin affects the backbone conformation, alters the tryptophan micro-environment, and exposes a nonpolar hydrophobic core to the surface. Mutant is less stable and opens its Greek key motifs earlier with a concentration midpoint (CM) of unfolding curve of 1.5 M compared to the wild type human γD-crystallin (CM: 2.5 M). Mutant is capable of forming self-aggregates immediately in response to heating at 48.6 °C. Conclusions: Loss of 39 amino acids in the fourth Greek key motif of human γD-crystallin affects the secondary and tertiary structures and exposes the hydrophobic residues to the solvent. These changes make the molecule less stable, resulting in the formation of light-scattering particles, which explains the importance of the fourth Greek key in the underlying mechanism of opacification and cataract.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Recém-Nascido , Criança , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , gama-Cristalinas/química , Cristalino/metabolismo , Catarata/genética , Catarata/metabolismo , Mutação , Mutagênese Sítio-Dirigida
18.
Appl Microbiol Biotechnol ; 108(1): 288, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587638

RESUMO

Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.


Assuntos
Escherichia coli , Lipídeos , Ornitina/análogos & derivados , Prótons , Escherichia coli/genética , Carbonil Cianeto m-Clorofenil Hidrazona , Lipídeos de Membrana , Fosfatos
19.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589417

RESUMO

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Assuntos
Proteínas de Escherichia coli , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fímbrias Bacterianas/química
20.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , 60535 , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...